The extension and convergence of mean curvature flow in higher codimension
نویسندگان
چکیده
منابع مشابه
Mean Curvature Flow of Higher Codimension in Hyperbolic Spaces
where H(x, t) is the mean curvature vector of Ft(M) and Ft(x) = F (x, t). We call F : M × [0, T ) → F(c) the mean curvature flow with initial value F . The mean curvature flow was proposed by Mullins [17] to describe the formation of grain boundaries in annealing metals. In [3], Brakke introduced the motion of a submanifold by its mean curvature in arbitrary codimension and constructed a genera...
متن کاملMean Curvature Flows in Higher Codimension
The mean curvature flow is an evolution process under which a sub-manifold deforms in the direction of its mean curvature vector. The hypersurface case has been much studied since the eighties. Recently, several theorems on regularity, global existence and convergence of the flow in various ambient spaces and codimensions were proved. We shall explain the results obtained as well as the techniq...
متن کاملLong-time Existence and Convergence of Graphic Mean Curvature Flow in Arbitrary Codimension
Let f : Σ1 7→ Σ2 be a map between compact Riemannian manifolds of constant curvature. This article considers the evolution of the graph of f in Σ1×Σ2 by the mean curvature flow. Under suitable conditions on the curvature of Σ1 and Σ2 and the differential of the initial map, we show that the flow exists smoothly for all time. At each instant t, the flow remains the graph of a map ft and ft conve...
متن کاملthe survey of the virtual higher education in iran and the ways of its development and improvement
این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.
Level set approach to mean curvature flow in arbitrary codimension
We develop a level set theory for the mean curvature evolution of surfaces with arbitrary co-dimension, thus generalizing the previous work [6, 13] on hypersurfaces. The main idea is to surround the evolving surface of co-dimension k in R by a family of hypersurfaces (the level sets of a function) evolving with normal velocity equal to the sum of the (d − k) smallest principal curvatures. The e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2017
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7281